

A113582


Triangle T(n,m) read by rows: T(n,m) = (n  m)*(n  m + 1)*m*(m + 1)/4 + 1.


4



1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 10, 7, 1, 1, 11, 19, 19, 11, 1, 1, 16, 31, 37, 31, 16, 1, 1, 22, 46, 61, 61, 46, 22, 1, 1, 29, 64, 91, 101, 91, 64, 29, 1, 1, 37, 85, 127, 151, 151, 127, 85, 37, 1, 1, 46, 109, 169, 211, 226, 211, 169, 109, 46, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

From Paul Barry, Jan 07 2009: (Start)
This triangle follows a general construction method as follows: Let a(n) be an integer sequence with a(0)=1, a(1)=1. Then T(n,k,r) := [k<=n](1+r*a(k)*a(nk)) defines a symmetrical triangle.
Row sums are n + 1 + r*Sum_{k=0..n} a(k)*a(nk) and central coefficients are 1+r*a(n)^2.
Here a(n) = C(n+1,2) and r=1.
Row sums are A154322 and central coefficients are A154323. (End)


LINKS

G. C. Greubel, Rows n=0..100 of triangle, flattened


FORMULA

T(n,m) = (n  m)*(n  m + 1)*m*(m + 1)/4 + 1.


EXAMPLE

{1},
{1, 1},
{1, 2, 1},
{1, 4, 4, 1},
{1, 7, 10, 7, 1},
{1, 11, 19, 19, 11, 1},
{1, 16, 31, 37, 31, 16, 1},
{1, 22, 46, 61, 61, 46, 22, 1},
{1, 29, 64, 91, 101, 91, 64, 29, 1},
{1, 37, 85, 127, 151, 151, 127, 85, 37, 1},
{1, 46, 109, 169, 211, 226, 211, 169, 109, 46, 1}


MATHEMATICA

t[n_, m_] = (n  m)*(n  m + 1)*m*(m + 1)/4 + 1; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]//Flatten


PROG

(MAGMA) /* As triangle: */ [[(nm)*(nm+1)*m*(m+1)/4+1: m in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 12 2016
(PARI) for(n=0, 15, for(k=0, n, print1((nk)*(nk+1)*k*(k+1)/4 + 1, ", "))) \\ G. C. Greubel, Aug 31 2018


CROSSREFS

Sequence in context: A128562 A034368 A296157 * A347147 A295213 A118245
Adjacent sequences: A113579 A113580 A113581 * A113583 A113584 A113585


KEYWORD

nonn,tabl,easy


AUTHOR

Roger L. Bagula, Aug 25 2008


STATUS

approved



